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Abstract 

The US Army Condition Based Maintenance Program has utilized static thresholding techniques to monitor the con-

dition of gearboxes, bearings, and shafts on nearly 2000 aircraft over the last decade.  In some cases, vibration based 

diagnostics thresholds do not produce the targeted detection or accuracy rates prescribed by Aeronautical Design 

Specification 79C.  The US Army Aviation Engineering Directorate has evaluated a dynamic thresholding technique 
produced by HUMAWARE.  This paper discusses the selection of a ground truth data set for this evaluation and 

presents the results of the new technique when applied to a small fleet of Apache rotorcraft. 

 

 

INTRODUCTION 

 
Throughout the history of the U.S. Army Condition 

Based Maintenance (CBM) program, static thresholds 

have been used to define caution and alert exceedance 

levels for vibration-based diagnostics.  Experience has 

shown that these levels can be inadequate for differenti-

ating between faulted and healthy populations.1  Sepa-

rability, one of the four key attributes of vibration diag-

nostics defined by ADS-79C, must be achieved for suc-
cessful implementation of CBM.2  Good separability 

clearly distinguishes faulted populations from the fleet 

norm.  The ADS-79C requirements for separability 

state that the false positive (FP) rate should be less than 

10 percent and the false negative (FN) rate should be 

10-6, depending on the criticality of the failure.2  The 

Army evaluated CFAR Autotrend to assess the perfor-

mance of its dynamic thresholding and trend analysis 

(DTTA) techniques as an augmentation to the current 

static thresholding technique.   

 

DYNAMIC THRESHOLD SETTING 

 

CFAR 

The CFAR technique functioned by splitting the 

threshold setting process into two stages.  Each stage of 

the processing treated sensitivity to a defect and false 

positive rate separately without compromising the per-

formance of either.  A further strength of the CFAR 
technique is that it made no assumptions about the sta-

tistical or frequency domain characteristics of the data.  

The first stage of the processing established a primary 

threshold set at a level that produced a measurable ex-

ceedance rate for the data stream (Figure 1).  The pri-

mary threshold level was controlled by a feedback loop 

to maintain the exceedance rate at a constant value, 

hence the name Constant False Alarm Rate (CFAR).  

The feedback loop set and maintained a threshold 

which maximized the probability of detection.  The 

second stage of the processing addressed the problem of 

false alerts and subjected the data that exceeded the 
primary threshold to a binomial (binary) integration 

process, also known as M out of N processing (MooN). 

The MooN processing filtered random noise compo-

nents out of the alerts to ensure that the primary thresh-

old was only exceeded by an underlying trend or other 

deterministic component of the signal.  Trending, or a 

similar underlying pattern caused by a defect, would 

correlate the data and trigger the secondary processing, 

whereas random noise or absence of a defect would not.  

The secondary processing had the benefit of remaining 

on once it was triggered by an alert, unlike static 
threshold techniques where the noise in the signal can 

cause the alert to switch on and off during the transi-

tion. 

 
Figure 1 – CFAR Processing 
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The amount of binomial integration was determined by 

the target FP rate.  Just as the primary threshold ex-

ceedance rate was controlled to maintain a constant 

rate, the secondary processing output was also con-

trolled to remain constant.  This control allowed both 
the sensitivity to defects and the False Alert Rate (FAR) 

to be managed successfully. 

Autotrend 

The Autotrend technique functioned by using the Box-

Car methodology (Figure 2).  The box trend was calcu-

lated using the latest data in the data stream while the 

car trend was calculated using the remaining data.  The 

turning point occurred where the two trends separated.  

For every new point in the data stream, the trend rate 

between the box and the car was calculated and com-

pared using null hypothesis testing and a separation 

factor to determine the significance of the difference 

between them. 

 
Figure 2 – Autotrend Processing 

 

INITIAL SETUP 

 

Evaluation Data 

The U.S. Army assembled a sample dataset for this 
evaluation that included a total of 29 AH-64 aircraft.  

The aircraft were further subdivided into 5 64A and 24 

64D model aircraft.  Approximately half of the dataset 

contained a homogenous mixture of static thresholding 

true positive (TP), true negative (TN), and FP condi-

tions as determined by detailed component teardown 

analyses.  The other half of the dataset contained a 

sample of random and presumably healthy aircraft de-
signed to boost the number of TNs in the dataset.  Prior 

to beginning the evaluation, the Army was unaware that 

CFAR Autotrend required a minimum amount of data 

prior to component failure in order to identify anoma-

lies.  Several of the cases intended to demonstrate the 

ability of DTTA to distinguish between healthy and 

faulted data did not have the required number of data 

points prior to component removal; consequently, those 

cases were removed from the study. 

Evaluation Methodology 

The U.S. Army used an evaluation methodology that 

corresponded to that described in ADS-79C for Detec-
tion Algorithm Development (DAD) in order to evalu-

ate the performance of DTTA.2  The methodology dic-

tated that, to be successful, DTTA must: 

• Achieve earlier detection than static threshold-

ing without degrading the current diagnostic 

accuracy, identifiability, and detectability. 

• Correctly identify features that were not origi-

nally detected by static thresholding (verified 

by referencing the maintenance actions report-

ed in the DA Form 2410 and component tear 

down analyses). 

Parameter Optimization 

The CFAR Autotrend algorithms used control parame-

ters to optimize the detection performance of DTTA.  

The parameters were defined in terms of identifiable 

features in the data streams and did not require special-

ized mathematical knowledge.  For the CFAR algo-

rithm, the principal parameter is the Primary Threshold 

Exceedance (PTE) rate.  The PTE rate controlled the 

primary threshold level and, hence, the sensitivity of the 

alerts to defects.  This sensitivity could be reduced, if 

required, by setting the Conservatism Factor.  The FAR 

Figure 3 – False Alert Calculator 
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was controlled by setting the M and N parameters for 

MooN processing.  A special calculator was used to 

predict the resulting FAR (Figure 3).  The calculator 

determined whether or not a target FAR would be 

achieved.  Parameters could also be set to determine 
whether the level change was large enough in amplitude 

to be considered a discontinuity or step change.  The 

Autotrend algorithm was primarily controlled by Box 

and Car lengths.  The Box and Car lengths determined 

if and when a trend would be detected.  The parameters 

ensured that the FAR for Autotrend could be made sim-

ilar to that of CFAR.  The detailed parameter descrip-

tions and the procedures for optimization are contained 

in References 3 and 5, respectively. 

To establish a basic parameter set for the evaluation, a 

small sample of the data was analyzed by Humaware 

using the CFAR Autotrend analysis software.  This 
parameter set was then applied to the evaluation da-

taset.  With the base parameter set in place, CFAR Au-

totrend immediately began analyzing the evaluation 

data.  Figure 4 demonstrates the ability of CFAR’s pri-

mary threshold (magenta) to track rising (top) or falling 

(bottom) data streams while avoiding confusion from 

random peaks in the data.  Once an alert was triggered 

(yellow), it remained triggered despite some periodic 

drop-outs in the data. 

 

 
Figure 4 – Primary Threshold Adapting to Data Stream 

The large number of threshold value changes in the 

charts demonstrates the requirement for the dynamic 

threshold setting functionality.  Figure 5 demonstrates 

Autotrend’s ability to accurately identify trends and 

their turning points.  The figure also demonstrates that 
the algorithm was not confused by trivial events in the 

data, such as level changes or shallow trends that were 

not diagnostically useful. 

 

 
Figure 5 – Primary Threshold Adapting to Trend 

The control parameters for the CFAR Autotrend were 

reviewed to optimize the results of the 4 ADS-79C met-

rics: TP, FP, TN, and FN.  This was of particular signif-

icance for the Autotrend algorithm, which initially pro-

duced an uncharacteristically large number of multiple 

alerts as shown in the upper chart in Figure 6.  The in-

flated number of true alerts indicated that the Box 

Length (the number of points that constitute a trend by 
the diagnostics process) was too short.  The Box Length 

parameter was increased to reduce the number of trends 

that produced alerts as shown in lower chart in Figure 

6. 

 

 
Figure 5 – Multi-Trend Detections  

A number of trends occurred as a result of level chang-

es which were not alerted by the CFAR algorithm as 

shown in the upper chart in Figure 7.  This problem 

occurred because the primary threshold in the CFAR 

algorithm was too high.  To correct this, the PTE rate 

was increased to heighten sensitivity to the level chang-
es.  The secondary processing MooN was maintained to 

keep the FAR in excess of 1 in 100,000.  The correction 

is shown in the lower chart in Figure 7. 
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Figure 6 – Trends that Should Be Step Level Alerts 

The discontinuity, or Step Conservatism Factor, was 
adjusted to remove ambiguities that existed between 

step and level alerts.  The resulting changes to the pa-

rameter sets were implemented and the analysis was 

reinitiated.  These modifications to the control parame-

ters resulted in a positive increase in performance as 

shown in Table 1.  The unverified alerts were compared 

to DA Form 2410 data to determine which alerts were 

true and which were false.  The 2410 data drastically 

reduced the number of unverified alerts, although 11 

alerts could not be resolved.  The resulting 33 FP alerts 

were randomly distributed across aircraft, components, 

sensors, and condition indicator (CI) type and therefore 

yielded an irreducible residual FP rate. 

Metric Old New 

TP 480 367 

FP 123   33 

Unverified 165   11 

Total 768 411 

Table 1 – Alerts Before & After Parameter Optimization 

 

RESULTS 

 

Preliminary Evaluation 

The preliminary evaluation data set consisted of 29 

examples.  Of these examples, 20 either produced alerts 
upon the component’s installation or provided insuffi-

cient data to be trended.  DTTA identified relative 

changes in data, but since installed defects did not pro-

duce a relative change in the data, static thresholding 

was still required to detect these defects.  For the pur-

pose of this evaluation, such cases were excluded from 

the analysis.  The remaining 9 cases produced the met-

rics as shown in Table 4. 

Metric 
Static 

Threshold 
DTTA 

Ground 

Truth 

TP 7 8 8 

FP 1 – – 

TN – 1 1 

FN 1 – – 

Table 2 – Metrics Summary with Ground Truth 

Current operational procedures affirm that a single CI is 

acceptable to produce a fault indication.  Of the DTTA 
alerts, only one was a single CI alert.  The remaining 

alerts were multi-CI, which may improve the accuracy, 

identifiability, detectability, and separability of the di-

agnostic processing as mandated in the evaluation 

methodology.  The DTTA techniques identified two 

defects that were not detected by the static thresholds, 

which is evidence of a greater sensitivity to defects.   

The alerts for CFAR occurred, on average (with stand-

ard deviations), 11 (16) data points or 24 (30) days ear-

lier than the static thresholding alerts; and the trend 

detections occurred 35 (16) data points or 34 (5) days in 
advance of the static thresholding alerts.  The large 

standard deviation in the “days” interval was due to the 

random occurrence of aircraft downtime in the evalua-

tion data set.  The variance would be greatly improved 

if the metrics had been converted to flight hours; how-

ever, such a conversion of metrics was outside the 

scope of this evaluation. 

Additional Findings 

In addition to accurately corresponding to the ground 

truth results, DTTA identified an additional 28 events 

that indicated a possible component defect, fulfilling 

the second mandate in the evaluation methodology.  All 
but 4 of these detections were confirmed to be legiti-

mate by the DA Form 2410 data.  The performance 

analysis produced the following Key Performance Indi-

cators (KPIs) as shown in Table 5. 

The majority of the static thresholding FNs discovered 

by DTTA occurred because the static thresholds were 

set artificially high.  This was done during the early 

learning stages of CBM to ensure an acceptable FP rate.  

Regardless, since the data did come from a fielded sys-

tem and since the defects were not alerted to the main-

tainer, it is reasonable to classify these defects as FNs 

for the static thresholding technique. 
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Metric Static Threshold DTTA 

TP   2 24 

FP – – 

TN – – 

FN 22 – 

Table 3 – Metrics Summary without Ground Truth 

 
Combining the two sets of results (Tables 4 and 5) with 

the uncertainty caused by the 11 unverified detections 

produces a best and worst case scenario as shown in 

Table 6. 

 

Metric 
Static Threshold DTTA 

Best Worst Best Worst 

TP   9   9 36 32 

FP   1   1 –   4 

TN   4 –   1   1 

FN 23 27 – – 

Table 4 – Combined Metrics Summary 

 
The FN rate for DTTA is idealistic.  The total popula-

tion of defects was discovered by DTTA techniques, 

not selected from an independent ground truth set of 

defects.  This analysis was sufficient to compare the 

static threshold and DTTA techniques, but it did not 

provide the absolute performance measurement for the 

DTTA FN rate.  Overall, there were 411 DTTA alerts.  

This abnormally large number was due to an artificially 

high number of events embedded in the data set and, as 

mentioned earlier, most alerts were multi-CI.  In all 

cases, the alerts were analyzed as true or false, yet there 
remained 11 alerts that could not be resolved.  This 

represents a level of uncertainty in the analysis as can 

be seen in Table 7. 

 

Metric Best Case Worst Case 

TP 378 367 

FP   33   44 

Percent of FP     9   12 

Table 5 – Total DTTA Alerts Metrics Summary 

 
The FP rate was within the target of 10 percent in the 
best case, but it was slightly outside the target in the 

worst case.  Given that most of the uncertain CFAR 

Autotrend detections have been resolved as true, the 

best case scenario may be the more likely of the two.  

The alerts for CFAR occurred, on average, 17 points or 

27 days earlier than the static thresholding alerts, and 

the alerts for Autotrend occurred 18 points or 15 days in 

advance of the static thresholding alerts.  As in the pre-

vious case, the inconsistent distribution of time versus 

points is attributed to the large intervals of non-flying 

times that were randomly distributed throughout the 

data set.  The number of DTTA alerts relating to a sin-

gle maintenance event is shown in Table 8. 

 

Number of Alerts 1 2–3 4–10 10+ 

Number of Events 10 12 13 2 

Table 6 – Number of Alerts to Events Detected 

 
Seventy-three percent of maintenance events resulted in 

more than one alert being generated.  These results cor-

relate to the number of CIs used on each component.  If 

there was a rich set of CIs, then there was a rich set of 

alerts associated with an event. 

Independent Evaluation 

In addition to the primary evaluation, AMRDEC’s Avi-

ation Engineering Directorate (AED) Aeromechanics 

Division performed an independent evaluation of the 
features and performance of the DTTA techniques.  

This evaluation examined the functionality and simplic-

ity of setting the various CFAR Autotrend parameters 

for the purpose of optimizing the results.  The evalua-

tion also extended the test set of data to include multi-

ple new data sets containing known component failures.  

The DTTA techniques accurately detected 100 percent 

of the known failures, including one failure that the 

static thresholds were unable to detect (Table 9). 

Metric 
Static 

Threshold 
DTTA 

Ground 

Truth 

TP 9 10 10 

FP – – – 

TN – – – 

FN 1 – – 

Table 7 – Independent Evaluation Metrics Summary 

 

CONCLUSIONS 

 

The principal findings from the evaluation program are 

that the DTTA techniques: 

• Exceeded the static thresholding detection ac-

curacy. 

• Provided significantly earlier detection than 

the static thresholds. 

• Detected maintenance events (material faults) 

that were not identified by static thresholds. 

A power distribution for the DTTA based on the valid 

test cases was 100 percent.  Test cases included a num-

ber of faults present upon installation.  CFAR Auto-
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trend is designed to identify a relative change in the 

signal level and is not a suitable technology for detect-

ing installed faults.  The results clearly demonstrate that 

the ADS-79 False Alert target of 10 percent can be met.  

The known false alert in the test cases was not alerted 
by CFAR Autotrend.  The automatic production of 

thresholds resulted in a large number of defect discov-

eries in the data set.  This was due to the static thresh-

olds being set arbitrarily high.  Since the static thresh-

olds are part of a technology in service, it is reasonable 

to say that these discoveries add to the FN rate.  Due to 

the design of the evaluation—all faults were discovered 

by one or the other of the techniques—the DTTA tech-

niques did not identify any FNs..  To determine the true 

FN rate, a test case would need to be constructed from 

the DA Form 2410 records without reference to the 

defect detection source, and the performance of the 

DTTA techniques would need to be evaluated. 

 

RECOMMENDATIONS 

 

The assessment finding is that DTTA techniques are 

ready for the next stage of development.  The following 

work items represent the issues that need to be ad-
dressed in order to develop an in-service DTTA capa-

bility: 

• Verify all relevant CI data sets for HUMS-

equipped fleets.  This is required to ensure that 

the performance reported in the assessment is 

valid for the entire fleet and that the parame-

ters are correctly set and allocated to the CI 

data types. 

• Verify the levels of conservatism to be applied 

to the setup parameters to minimize the No 

Fault Found (NFF) rate, yet not compromise 

the TP and FN rates.  The assessment shows 
that the processing can be too sensitive to de-

fects, raising the prospect of increasing the 

NFF rate and costing useful life. The parame-

ters can be lowered to reduce sensitivity. 

• Assess other data sets, such as engine Health 

Indication Test (HIT) check trending.  There 

are other data sets being recorded in the 

HUMS, engine performance, and usage that 

could benefit from the use of the technology. 

This should be evaluated before fielding. 

• Verify integration with existing static thresh-

olds. 

• Revise the training and doctrine for the use of 

trend-based alerts by personnel utilizing the 

system. 

• Validate the software functionality and the op-

erational interfaces for the control and pro-

cessing of the CI data.  

• Develop a maintenance action reset function. 
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